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AbstrMct-Two quadratic elltremum principles for finite strains of rigid-viscoplastic continua with
piecewise linear constitutive laws are derived from and formulated using both the Eulerian and
Lagrangiim descriptions of the continuum motion. The principles generalize to finite strains two
previous e;{tremum properties of the dynamic solution of rigid-plastic small-strain. large dis­
placement bodies ftlund by Capurso. StolilrSky and Belytschko's recent non-quadratic theorem is
shtlwn to l'C a sl:>I.'l:ial form of one of the two theorems when the functional dependence from a
variable is implicitly expn:sSt.-u.

I. INTRODUCTION

The problem of determining the large displacement dynamic responsc of a body under a
given high intensity loading has found. on the widely al.:cepted assumption that the clastic
strains arc small as compared to total strains. a fundamental hypothesis for the development
of a number of methods and numerical b.:chniques forming an important part of the more
recent developments the plastic body theory.

In this context Tamuzh's[l] extremum principle, which gives the acceleration field of
a rigid-plastic solid at a given time. the velocity field as well as body and surface forces
being known. was extended by Capurso[2] with two extremum principles to the large
displacement (small strain) C.lse in the presence ofa rigid-viscoplastic solid with a piecewise­
linear yield surface. In these extensions the functionals to optimize involve the acceleration
and stress field. or the acceleration and plastic multiplier acceleration field, respectively_

A corresponding quadmtic programming formulation was also derived by the same
author in a finite clement context.

More recently. Stolarsky and Belytschko[3] extended Tamuzh's principle to the more
general case of large strains with a smooth yield surface and presented the results of an
application to the particular case of rod structures. using a numerical procedure to determine
the rigid-plastic response by solving a series of quadratic programming problems.

In this paper Capurso's principles are extended to cover the general case offinite strains
and the two corresponding principles obtained involve the same pair of functions. They are
both derived by the Eulerian and Lagrangian descriptions of the deformations (kinematic
description) and of stresses (kinetic description).

In Section 2 thc gencral formulation of the constitutive laws of rigid-plastic materials
on the assumption of a piecewise-linear yield surface and finite strains, is given for both
descriptions considering the need to refer to objective quantities in order to provide a
description independent of the reference system.

Section 3 is concerned with the formulation of the problem using both the Lagrangian
and Eulerian approaches. while in Section 4 extremum principles are derived.

Finally. Section 5 deals with the particularization of the new principles to the previous
ones by Capurso (large displacements with small strains) and to the derivation of Stolarsky
and Bclytschko's formulation.
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2. CONSTITUTIVE LAWS

2.1. Eulerian approach
Reference is made in the following to the Eulerian description of the kinetics and

kinematics. In a Cartesian orthogonal reference system let Xi be the current position occupied
by a particle at time t and let ai be its original position at time t = O. The components u, of
the finite displacement vector of the particle are then given by

ui = xi-a,. (I)

In this context the strain field will be described by the Almansi strain tensor defined
by

(2)

The stress field will be described in the following through the Cauchy stress tensor (l/j

the components of which refer to the strained state of the body. Besides, the assumption is
made of rigid-viscoplastic hardening and associated material behaviour with yield domain.
delimited, in the stress space (lij, by n planes

where N;,k are the n outward unit vectors normal to the n yield planes. and

k. = r. + L 11./1):/1
/I

(3)

(4)

where r. defines the yield polyhedron plane distances from the origin in the original (virgin)
stale of the material. the interaction coefficients 11./1 define the hardening rule, and 1/1
denotes the plastic multiplier rates. In what follows r •• 11./1 are assumed to be independent
of;: and matrix H./I to be symmetric definite positive.

In order to ensure the invariance of the yield function with respect to any rigid body
motion of the material particle, the yield condition, eqn (3), must be expressed as a function
of the corotational stress tensor

(5)

where Rh" defining the rigid body motion of the particle. is obtained by decomposing the
deformation gradient

(6)

into the product of the rotation tensor R", and a (right) stretch tensor Ukj in the form

(7)

being

(8)

Then the yield condition. eqn (3), becomes

(3')

where
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tilu; = Rh,N"v.« Rk i

is invariant in the corotational reference system, and
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(9)

(10)

(n order to describe the associated now rule the Almansi strain tensor is used as a
measure of deformations. However, the rate

(11 )

is not conjugate to Cauchy stress (their scalar product does not give work) and the rate

(12)

(called "rate of deformation tensor") will be used. Then, through eqn (3), the associated
now rule becomes

unllcr the constraints

(I', ~ 0, 1., ~ 0, (1'';:, = o.

( 13)

( 14)

Limitation to the acceleration Held i;'1 must then be derived from eqns (13) and (14)
equally involving objective quantities. However. from the material derivative of eqn (13),
the following is obtained:

( IS)

where

( 16)

can be easily shown to be frame dependent. In order that objective quantities appear in the
first member of eqn (15) the following relation can be used[4] :

(17)

where W,; = !(ti",-li,,) is the spin tensor and

( 18)

(referred to as the "corotational derivative of D,/') may be easily proved to be frame
independent. As a result eqn (15) becomes

( 19)

where the plastic multiplier accelerations X, are subjected to the constraints
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;.~ = 0

X. ~ 0

X. free

if fP. < 0 and ;:. = 0

if fP. = 0 and ;:. = 0

if fP. = 0 and ;:. > 0
(20)

which may be expressed as follows in a more compact form:

fP.X. = 0 and X. ~ 0 if CPt ~ 0 and i. = 0 (VR)

cp)~ = 0 and X. free if CPt = 0 and ;:, > 0 (Vp).
(21)

In eqn (19) the second term of the second member always vanishes. In fact, when the
material point lies in a rigid region, ;:. = 0; besides, considering that[4]

we have

d .
-(R) = R = WLRkdt " " I~ J

(22)

(23)

thus. in the plastic region too (where ;:. > 0) the second term of the second member of eqn
(19) vanishes. This implies that the plastic multiplier accelerations arc always governed by
the condition

II •• VIP. •• (J

D" = L;" ~ o· = Li.,N"i
,J (dT,; r

(24)

stating the normality of the corotationul derivative of the rate of the deformation tensor to
the field surl~lce.

In conclusion. the rigid ~viscoplastic constitutive laws for large strains in the Eulerian
approach can be summarized in the following relationships:

fP.X. = 0 and X. ~ 0 if(p, ~ 0 and i. =0 (VR)

fP.X. = 0 and X. free if (P. = 0 and A. > 0 (Vp)

(25)

(26)

(21)

(28)

(29)

(30)

where eqns (29) and (30) define the rigid VR and plastic Vp regions. respectively, and k, is
given by eqn (4).

2.2. Lagrangian approach
Let the assumed independent variables be the positions ai occupied by a particle at

time t = 0, Le.
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Xi = x,(aj) = ai+Uj(aj, t)
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(31 )

and let the stress and strain fields be described by Kirchhoff's and Green's tensors 5,1' Elj'
respectively. The yield domain, eqn (25), becomes

(32)

where

(33)

Po and p being the initial and final density, and where, using eqn (25) once again

(34)

The flow rule, eqn (26), is transformed into

(35)

as can be easily shown starting from eqn (26) where N:hk is replaced by N~hk using eqns
(34) and taking into account the relation[4]

By a time derivative of eqn (35) we have finally

.. ~ \' Pu s ~ ~ d (po s)Elj = L,A..-N.,j+ L,A.' d -N.li •
• P • t P

(36)

(37)

Equation (37) shows that Eii is not normal to the yield surface, Taking into account eqns
(A21), the last term of eqn (37) can be transformed as follows (denoting iJ/voj with /J> :

(37')

and then using eqns (22), (10), (13), and (12) and remembering that W ii = ~(liill-Ulii)

+ N;.... Xh/[,'tk/jWhm +N~..Xhf[Xk:jW*,,]

= !(UklrUk{j+ Uh/kXhj;lik{j+ Uk/hUh,iXk/j

+ Uk:...Xh/[Xk/jUh/...). (38)
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In conclusion. the rigid-viscoplastic constitutive laws for large strains in the Lagrangian
approach can be summarized in the following relations:

. "" PONsEij = L. A., - ,i/
, P

.. " ., Po s ". d (po S)
Elj = L,A.,-N,ij+ L.A.'d -N"j

, P , t P

cp)~ = 0 and ~~ ~ 0 if cp, ~ 0 and 1., = 0 (VRO )

CP.~~ = 0 and ~~ free if cp, = 0 and 1., > 0 (Vpo)

(39)

(40)

(41 )

(42)

(43)

(44)

where eqns (43) and (44) define the rigid VRO and plastic Vpo regions. respectively. and k.
is given by eqn (4).

2.3. Determination ofplastic multiplier rates
A problem ever encountered when solving a rigid-viscoplastic dynamic problem is find

Ollt whether at a given time t. a particular point with a known deformation gradient D'j or
t" lies in the plastic or rigid region. This can be accomplished simply by determining the
plastic multiplier rate i, corresponding to that particular D", as i., is positive in the plastic
region only, whereas it vanishes in the rigid one.

With reference to the Eulerian approach. through the same proof used in Ref. [2] but
replacing the flow rule by the condition

D" = L: N:,J,,

it is possible to derive the following statement: the quadratic functional

defined for all plastic multiplier rates 1.: satisfying the conditions

I
D;j = :2 (ti'lJ + lij/i) = L: N:iji.:

•
;:: ~ 0

(45)

(46)

(47)

attains an absolute minimum for the real value of the plastic multiplier rate i ..
If the hardening coeflicients H,(I define a positive definite hardening matrix, the solution

;:, will be unique.
The stress state ail corresponding to the deformation tensor D,j not always can be

determined uniquely. In fact. the only limitations on the stresses (Jij are set by conditions
(27), i.e.

N:i/(1,j - k. = 0 if ;:. > 0

N:,pij-k, ~ 0 if ;:. = 0

which may not be sufficient to determine ail univocally.

(47')
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Finally. using the Lagrangian approach the above statements still hold after replacing
the normality condition (47) by the new one

Eij = LJ.: Po N:,j
2 p

1.: ~ o.
(47")

3. FORMULATION OF THE DYNAMIC·LOADING PROBLEM

3.1. Eulerian approach
Let us assume that. at a given time I. the current configuration u, of a body having

volume V and surface S. the density P. the field of velocities U,. the surface tractions T, on
a part Sr of S. the surface accelerations Oi over the remaining part S. = S - Sr of the
surface, and the body forces Xi = pFi are known.

The dynamic-loading problem consists in determining the stress field (Iii and the
acceleration field ii, for the same instant t. From the solution of this problem. when dealing
with time-dependent known quantities X,(t). 1';(/). u,(/). li,(/) and 0,(1). the whole dynamic
history. i.e. the unknown functions ii,(t). (f,N) can be obtained simply by an incremental
process over time t.

All the conditions governing the dynumic-Ioading problem at a generic instant tare
given below.

(a) Equilibrium equations

(lij/i+I'F;=pii, in V

(I,/'i = T, on Sr

where (I'i are the components of the Cauchy stress tensor.
(b) Computibilityequations

(48)

e'l = !(u,/i+lIi/1- Uk/I Uk/i)

e,j = !(ui/i+uj/;)-(eikUk/i+ukllekj)

e/J = D, j - (D'k uk/j-e,h1ihlkUk/i- Uh/iehkuk/j

+e,k(l/kll- UhfjUk/h) +ekl(Ukli- UhliUk/h)

+lik/iDkj-uk/,ekhuh/J-Uk/iuh/kehl) in V

iiJ = OJ on S. (49)

where e'l are the components of the Almansi strain tensor; besides

(SO)

and the objective derivatives D'I of e,j and D~ of elf are

(51)

(c) Constitutive laws. given by eqns (25)-(30). The velocity field 1.2 appearing in the
above equations can be obtained as indicated in Section 2.3 form the known field U, (which
define Dij according eqn (51),).
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3.2. Lagrangian approach
All the equations governing the dynamic loading problem at a generic instant tare

given below.

(a) Equilibrium equations

in Vo

(52)

on SOT

where SI/ are the components of the Kirchhoff symmetric stress tensor.
(b) Compatibility equations (denoting %a) with 11)

Ei; = !(uili+lljlr+UkliUkli)

EiI = !(li'/i+ IiJii + lik1iUk!i +Uklrlikli)

Eil = !(iiili+ iij/r+ iiklrukU+ Uklriikli) +Uklrlikli in Vo

ii, = 0'0 on So" (53)

where Ell arc the components of the Green strain tensor and E" and Eil are objective by
ddillition.

(1.:) Constitutive laws. given by eqns (39)-(44). The velocity field i., appearing in the
above equations can be obtained as indicated in Section 2.3 from the known fields Ui and
I;, (which define 1:.:,; according eqll (5Jh).

4. MINIMUM I)RINCIPLES

4.1. Eulaiall appruach
Theorem I. The jimctiollal

defilled ji)r all stresses a,"; al/(I acceleratiolls iit satisfying the conditions

ai'jli+ pFJ = piij in V

a,~n, = TJ on S,

N;'kaj,-k. = 0 111 Vp

(55)

allaifl.\· (11/ ahsolute millimum for the actual stress aij and accelerations iij fieldr. Vp and VR

heill!Jthe plastic alld rigid regions d('fined by conditions (29) and (30). respectil'ely.
Proof In order to prove the theorem. it suffices to show that the difference

(56)

is always nonnegative for any arbitrary ai"j. iit satisfying conditions (55). Assuming
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the difference. eqn (56). becomes
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(57)

Using Gauss's theorem and eqns (55)1 and (55h

where the last term of the second member vanishes because Al1jf =0 on Sr. Then the
difference, eqn (56), becomes

(60)

where the second integral. owing to the symmetry of the Cauchy stress tensor, may be
written in the form

(61 )

and the difference ,1<1), by virtue of eqn (18), becomes

(62)

The first term on the right-hand side is always positive for any non-vanishing Aii! and equal
to zero if and only if

ii,* = iii in V.

Using eqn (28) the second term becomes

In region Vp (where CPs = 0 and 1. > 0), from eqns (55h and (30) it can be stated that

(62')

(63)
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In the remaining region VR (where ;:. = 0), from the condition

(65)

we can write eqn (63) in the form

(66)

which will never be negative as a result of condition (55)~ and of the nonnegativity of ~: in
VR stated in eqn (29). It will be equal to zero if and only if

This proves that

N~ii(1~-k. = 0 where~: > O. (66')

(67)

for any stress rT,~ and acceleration iii fields satisfying conditions (55). the equality sign
holding if and only if the accelerations iii satisfy eqn (62') and stresses (1i~ satisfy eqn (66').

This proves the theorem. It follows from this proof that the ,Ictual acceleration field ii,
is univocally defined; on the contrary. the actual stress field "" may not be determined
univocally because the only limitations that we must respect nrc

N~/,",~-k. = 0 III VI'

N~"rT,~-k. = 0 if X. > 0 in VI{

N~,"J,~-k. ~ 0 if X. = 0 in VI{ (67')

which may not always be sutlicient to determine rT,"; univocally.
Theorem II. The jimctional

\fI(iii. X:> =.,~ rpiitiij d V - rpFjiii d V - r ~iij dSr +L rkJ: d V (68)- J. J. J.vr • J,.

dejin£'dfor all accelerations iii and plastic mulliplier acceleratiuns X: satisfying the cunditiuns

iii = 0, on S"

III V

(69)

attains an ah.wlute minimum for the actual acceh'rations ii, alltl plastic multiplier accelerations
X•• VR hdng the rigid region as defim'tf hy eq/l (29).

Proof. The following proves that the difference

AU' _ U'(··. ".) U'(OO ")UT - T u) ...... -T u,......

is always nonnegative for any arbitrary iij. X: satisfying conditions (69). Assuming

(70)
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(71)

A'll = 2~ f pAujAuj dV+f piijAiij dV-f pFjAiij dV - r 1jAiij dSr +L fk2A).~ dV.
v v V JST 2 ~

(72)

Using the equilibrium equations. eqns (48). and Gauss's theorem we obtain

(73)

and consequently the difference A'll reduces to

(74)

Thc symmctry of thc Cauchy strcss tcnsor and the use of eqn (51 h. enablc us to writc thc
second intcgral of cqn (74) in the form

Then

(76)

which. using condition (69h. is transformed into

The first integral is always positive and equal to zero if and only if

iii = iii in V.

(77)

(77')

The second integral. in the region Vp vanishes. because €P. = 0; in the remaining region VR•

by virtue of the condition

(78)

the tcrm reduces
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(79)

which is always nonnegative for every non-vanishing X: in consequence of condition (69h
and because f/J. ~ O. and is zero if and only if

(79')

This proves that

(80)

for any acceleration field iit• and plastic multiplier accelerations A.: satisfying conditions
(69). the equality sign holds only inasmuch as eqns (77') and (79') are satisfied.

This proves the theorem. Again. it follows from this proof that the actual acceleration
field ii j is univocally defined; on the contrary. the actual plastic multiplier accelerations A.~

may not be determined univocally (even for non-vanishing hardening coefficients H.p).

because the only limitations that X: must satisfy are

1: ~ 0 if N;/j(1,/-k. = 0 in VR

X: = 0 if N:/I(1/1-k. < 0 in VR

which may not be sullicient to determine X: univocally.

(80')

4.2. Lagrangian approach
A simple way to derive a theorem corresponding to Theorem ( but involving quantities

rclev:lnt to the Lagrangian approach only. is to adopt a similar proofas Theorem ( starting
from the following st:ltcment.

The fllncrional

dljined for all stress S,j ami acceleration iij jield\' sari.\fying the conditions

iJ (s. ox;) F _ ..•
-;J- lk:;- + Po 0; - POUt
cal Uak

on STO

N~/cS:-k.= 0 in Vpo

N~,/cS:-k. ~ 0 in VRO (82)

al/ains all ahsolute minimum for the aClllal stresses So and accelerations iii. Vpo and VRO

being the plastic and rigid regions referred to the initial configuration.
Again. the proof consists in showing that the difference
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is always nonnegative for any arbitrary 50' ii: satisfying conditions (82).
Assuming

6,5ij = 50 - 5'j

Mi j = it: - ii)

Ai) = .'\:h.[li'Jlih , + Xh iXk jli" ,Iik , + Ii, i.'l:k Jlik ,+ Ii, ili'1

Bij = ,.1,,- 21i, iii, J

we have

611

(83)

(84)

(85)

Using (equilibrium) eqns (82), and (82h and Gauss's theorem. we obtain

(86)

where the last term on the right-hand side vanishes because 6,S,k = 0 on Stu. Then the
dilli:rence, elln (85), becomes

where on account of the symmetry of the Kirchhoff stress tensor, and using eqns (A3). the
second integral may be written as

and the difference 6,<IlL, by virtue of eqns (53). becomes

(88)

In eqn (88) the first integral of the second member is always positive for every non-vanishing
Mi, and equal to zero if and only if

SAS U:6-C
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(89)

In consideration of eqn (42) the second tenn on the right-hand side of eqn (88) becomes

where, using eqn (38)

(90')

Then the difference ti<l>L of eqn (88) becomes

(91)

In IIt(' plaslic regio" (where ({', == 0, ):. ~ 0, ({',;:, == 0), from condition (82h and (30),
it can be stated that

In tlte n'TtUlittin.Q rt~qi(1n (where 1.. = 0), from the condition

we can rewrite the last term of eqn (91) in the form

(92)

which will never be negative on account of condition (82)4 and of the nonnegativity of ).~

in VRO stated in eqn (43).
This will be equal to zero if and only if

(93)

This proves that

for any stress S~ and acceleration ii1 satisfying conditions (82), the equality sign holding
if, and only if, the accelerations iii· satisfy eqn (89) and the stresses St satisfy eqn (93). This
proves the theorem.

It follows from the above proof that the actual acceleration field iii is univocally
defined; on the contrary. the actual stress field SIj may not be univocally detcnnined because
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the only limitations that we must respect are

N~ijS0-k. =: 0 in Vpo

N~iJS0-k. =: 0 if ,i~ > 0 in VRO

N:ijSn-k. ~ 0 if X. =: 0 in VRO

613

(94)

which may not always be sufficient to determine Sij univocally.
Finally it is easy to show that the statement of the present theorem could have been

obtained starting from the corresponding Eulerian formulation (54). (55) and using the
formal relationships (see Appendix) between the variables of the Eulerian and Lagrangian
approach.

A theorem corresponding to Theorem II but involving quantities relevant to the
Lagrangian approach can be derived by a similar proof. starting from the following
statement.

The jimetional

lULl •.• ,.) - I f. ...... d V f. t: ... d V iT". dS "f. k \'. Po d VT II,. ..... -, . I'ull, II, u- . I'ur 0, II, u-. (h ll, ro +L . .A..-~ u
- In III .lii: rn 'I J 1I P

(95)

d(jilledfor alll'lastie mllitiplier accelerations X: and a('cderations ii,· .mtis.!.i:ifl!1 ('onditiofls

ii,· =: 0, on Suo

., " \. (/10 \,) ". d (PO .. )
l~n =: L I.. N~" +L ).• I N~"

• P • ( t l'

X: ~ 0 in VRU (96)

attains ill/absolute minimumfor the actualllccdermiolls ii,lInelpillstit" multiplier accelerations
X•• VRU hein,t/ the ri.qid region referred to the initial con,Ftjllration.

Again. the point to be proved is that the difference

is .tlways nonnegative for any arbitrary X:. ii,· satisfying conditions (96). Assuming position
(7 t). the above difference becomes

Using the equilibrium equations. eqns (52). and Gauss's theorem we obtain
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(98)

and then the difference A'f'l reduces

Atill I fA" A" d V f S CXi A" dr.? '" f k ,. Po dUT = ~ potill,UUi 0- ilc~tilliJ'0+ 1.- ·,A....,- Vo·
- 1'0 1"0 calc , v" P

(99)

The symmetry of the Kirchhoff stress tensor Sjleo the use of eqns (A3) and (53h make it
possible to write the second integral of eqn (99) in the form

( 100)

then

which using condition (96h is transformed into

A\UI. I fA" A" d V '" f (NS
C' k) A,. flu d"u r =.., Poull,ull, u - 1.- '11e') lie - • U"_,'- .' u·

- t'u % VI) I'

The first integral of eqn (102) is always positive and equal to zero if and only if

.'. " . VIII = II} tn (I.

( 1(2)

(103)

The second integral. in the region Vl'lh vanishes because (P. = 0; in the remaining region
VK1h by virtue of the condition

the term reduces to

(104)

which is always nonnegative for every non-vanishing X: as a consequence ofcondition (96h
and because Cf', ~ 0, and is zero if and only if

(105)

This proves that
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'PL(U~, X:) ~ 'PL(Uj , ).~)
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for every acceleration u~ and plastic multiplier acceleration X: satisfying conditions (96),
the equality sign holding if and only if eqns (103) and (105) are satisfied,

This proves the theorem. Again it follows from this proof that the actual acceleration
field iii is univocally defined; on the contrary, the actual plastic multiplier accelerations X.
may not be determined (even for non-vanishing hardening coefficients H./l) because the
only limitations that X: must satisfy are

.... ,,". (po s) ,,~ d (po s)
c:.,} = L. I.. - N IIJ +L. A.. d - N .ii

• P • t p

~: ~ 0 if N~'JS'i-k.= 0 in VRO

X: = 0 if N~ijS'J-k.< 0 in VRO (106)

which may not always be sufficient to determine SI} univocally.
For this theorem too, finally it is easy to show that the statement of the theorem could

have been obtained starting from the corresponding Eulerian theorem formulation (95),
(96) and using the formal relationship (see Appendix) between the variables of the Eulerian
and Lagrangian approach.

5. LINKS WITH PREVIOUS THEOREMS

The theorem ofStolarsky and Bclytschko(3) and the less recent theorems ofCapurso[2)
appear to be different forms of Theorem (( and special cases of both theorems, respectively.

Stolarsky and Belytschko's theorem corresponds to Theorem (( of the Eulerian
approach when the functional dependence from the variable X: and the relevant conditions
arc implicitly expressed in the functional. This may be obtained by defining as kinematically
admissible the lields a~, I/~ satisfying the following conditions:

(a) Ilj satisfies the boundary conditions (eqn (69),);
(b) a" arc consistent with the relevant field Du' eqn (26) in Vp• In VR they correspond

to D,l:. through eqn (28) where D::· is given by eqn (18) iii being replaced by iij and
respecting limitations (29) with X. = X: ~ O.

In other words, the stresses a0 (Ii'j) corresponding to kinematically admissible accelerations
II,· arc defined both in the region Vp and (although not univocally) in the region VR, by the
conditions

DO.(".) - N a "." II, - .iJ I••

N:'Ja0(ii~) -k. = 0 if X: > 0

N:'J a0 (tI,·) -k. ~ 0 if X: = 0

where the last two equations can be more concisely expressed as

(107)

(108)

Then. bases on eqns (68) and (69) and using eqns (108) and (107), Theorem (( can be
written as follows.

Among all kinematically admissihle fielcls of accelerations iij, the solution iii minimi=es
tlte fllnctional

J(iij) = ~ i.Pllriij dv-i.p~lljdv-i ~uj dsr+i a0(t1j)D~·(llj)dV. (109)
- I I Sr V

This is Stolarsky and Belytschko's theorem(3), which, however, in the last integral of eqn



616 A. CAlm'l! and O. DE DONATO

(109). loses the quadratic form of the functional. typical of the above Theorems [ and rr.
when the yield surface is generally convex (not necessarily piecewise linear) and N;'l and
k. are suitable functions of (1;j'

Finally. the particularization of Theorems [ and 1I of the Lagrangian approach to the
case of small strain-finite displacement theory quite naturally leads to Capurso's theorem[2]
when considering that the new configuration of an original infinitesimal element must
coincide with the initial one. except for a rigid body motion of any amplitude which has
taken place. i.e.

£;i = RihUhi == Rii

t ii = Fm;DmnFni == RmiDmnRni' (110)

Besides. in eqn (42) the last term of the second member vanishes as can be shown using the
equivalent expression (37'). taking eqns (110) and (8) into <lccount. i.e.

( III)

and. then. eqns (40) and (42) of the constitutive luws. reduce to

. ". ,.
E" = L.;'.N~ii

2

( 112)

Using the ..bove positions. Theorems [and [[ of the Lagrangian approach come to coincide
with Capurso's smull-strain. lurge-displacement theorems.

In particubr functional (H I) written in the form

«J>t.(S,~.iii) = ~ f Polil-ut dVo+ ~ r S,'i(A.j-2Iirtilirli) dVu- r X*liSi~f10,0* dSull- Jl If - J~ 0 JS I4U

(II 3)

transforms itself. taking into uccount eqn (90'), into

( 114)

which is the functional of Theorem 10fCapurso(2).
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APPENDIX

The above widely used relationships between static. kinematic and material behaviour quantities relevant to
the Eulerian and Lagrangian approach are summarized here.

Denoting by x, and a, the current (at time I) and the original (at time t = 0) positions of the same material
particle. the Eulerian and Lagrangian descriptions of the geometry are based on the relations[4.5)

a, = x,(1) - u,(X,(t).I) (Eulerian)

.T,(t) = a, +u,(a,. I) (Lagrangian)

implying (if clea) is denoted by Ij) the following relations:

and the following material time derivatives:

(AI)

(A2)

(A3)

(M)

d (11/1,) . .
dt iJ.\, = U'I-

II
"II".

(AS)

(A6)

/),·/i""'''li.,,,-,
Almansi C'" and Green 1:'" tensors as well as the defonllation gr:ldient 1';, arc given and correlated by the

following relations:

(A7)

(AS)

(A9)

t' = ~ (F _ ~.~)IJa,
'I 2 JIt. DX

J
iJx,

£" = !(F"F.,-t5,,)

(AIO)

(All)

(AI2)

Strt'ss dt'n.fily anelforct'S
The Cauchy ai, = a". Kirchhoff S" = S,. and Lagrange T" ", Tp stress tensors are brought into rc:lation by

P ex, Ih,a = - . 00 S..
II Po cu" ~a" .

Po ea, iJa,
S,/ = - ..- ---au.

P (1x.lh,

Po (1a,
T"=-~a,,,

P LT,

while density and forees arc related as follows:

P ex,
a" = - "il'" T"

Po ca,
(AIJ)

(AI4)

(AIS)
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Po dVo = p dV. Flu = F,. To. dSo = T. dS

i'a P
~no. dSo = -n. dS
ex. Po

(AI6)

(A16')

where "0" refers to the variable value at time I = O.

Yield functions
Depending on the chosen stress spal.'e. the piecewise-linearized yield surface. is expressed as

Cl'x = IV;'JS,/-k" ~ 0

C/JJ = ii20 t1,,-k:a: ~ 0

where u" are the components of the corotational stress h:nsor

R.t being a generic rigid body motion.
The relations between the outward normal unit wctors N,,, are

(AI7)

(AI8)

(AI9)

(1\21)


